Statistics for Business and Economics

Tenth Edition, Global Edition

Chapter 9 Hypothesis Testing: Single Population

Chapter Goals

After completing this chapter, you should be able to:

- Formulate null and alternative hypotheses for applications involving
- a single population mean from a normal distribution
- a single population proportion (large samples)
- Formulate a decision rule for testing a hypothesis
- Know how to use the critical value and p-value approaches to test the null hypothesis (for both mean and proportion problems)
- Define Type I and Type II errors

Section 9.1 Concepts of Hypothesis Testing

- A hypothesis is a claim (assumption) about a population
 parameter:
- population mean

Example: The mean monthly cell phone bill of this city is $\mu=\$ 52$

- population proportion

Example: The proportion of adults in this city with cell phones is $P=.88$

The Null Hypothesis, H Sub 0 (1 of 2)

- States the assumption (numerical) to be tested Example: The average number of TV sets in U.S. Homes is equal to three ($H_{0}: \mu=3$)
- Is always about a population parameter, not about a sample statistic

The Null Hypothesis, H sub 0 (2 of 2)

- Begin with the assumption that the null hypothesis is true
- Similar to the notion of innocent until proven guilty
- Refers to the status quo
- Always contains "=", " \leq " or " \geq " sign

- May or may not be rejected

The Alternative Hypothesis, H Sub 1

- Is the opposite of the null hypothesis
- e.g., The average number of TV sets in U.S. homes is not equal to $3\left(H_{1}: \mu \neq 3\right)$
- Challenges the status quo
- Never contains the "=", " $\leq "$ or " \geq " sign
- May or may not be supported
- Is generally the hypothesis that the researcher is trying to support

Hypothesis Testing Process

Claim: the population mean age is 50. (Null Hypothesis:

$$
\left.H_{0}: \mu=50\right)
$$

Population

Is $\bar{x}=20$ likely if $\mu=50$?

If not likely, Reject
Null Hypothesis

Suppose the sample mean age
 is 20: $\bar{x}=20$

Reason for Rejecting H Sub 0

Sampling Distribution of \bar{X}

Level of Significance, α

- Defines the unlikely values of the sample statistic if the null hypothesis is true
- Defines rejection region of the sampling distribution
- Is designated by $\boldsymbol{\alpha}$, (level of significance) - Typical values are $0.01,0.05$, or 0.10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Level of Significance and the Rejection Region

Errors in Making Decisions (1 of 2)

- Type I Error
- Reject a true null hypothesis
- Considered a serious type of error

The probability of Type I Error is $\boldsymbol{\alpha}$

- Called level of significance of the test
- Set by researcher in advance

Errors in Making Decisions (2 of 2)

- Type II Error
- Fail to reject a false null hypothesis

The probability of Type II Error is β

Outcomes and Probabilities

Possible Hypothesis Test Outcomes

	Actual Situation	
Decision	H_{0} True	H_{0} False
Fail to	Correct	Type II Error
Reject	Decision $(1-\alpha)$	$\boldsymbol{\beta})$
H_{0}	Reject	Type I Error (α)
H_{0}	Correct Decision $(1-\boldsymbol{\beta})$	

($1-\beta$) is called the power of the test

Consequences of Fixing the Significance Level of a Test

- Once the significance level α is chosen (generally less than 0.10), the probability of Type II error, β, can be found.

Type I \& II Error Relationship

- Type I and Type II errors can not happen at the same time
- Type I error can only occur if H_{0} is true
- Type II error can only occur if H_{0} is false

If Type I error probability $(\alpha) \Uparrow$, then
Type II error probability $(\beta) \Downarrow$

Factors Affecting Type II Error

- All else equal,
$-\beta \Uparrow$ when the difference between hypothesized parameter and its true value \downarrow
$-\beta \Uparrow$ when $\alpha \Downarrow$
$-\beta \Uparrow$ when $\sigma \Uparrow$
$-\beta \Uparrow$ when $n \Downarrow$

Power of the Test

- The power of a test is the probability of rejecting a null hypothesis that is false
- i.e., \quad Power $=P\left(\right.$ Reject $H_{0} \mid H_{1}$ is true $)$
- Power of the test increases as the sample size increases

Hypothesis Tests for the Mean

Section 9.2 Tests of the Mean of a Normal Distribution Sigma Known

- Convert sample result (\bar{x}) to a z value

Decision Rule

Reject H_{0} if $z=\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}}>z_{\alpha}$
Alternate rule:
Reject H_{0} if $\bar{x}>\mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}}$

p-Value

- p-value: Probability of obtaining a test statistic more extreme (\leq or \geq) than the observed sample value given H_{0} is true
- Also called observed level of significance
- Smallest value of $\boldsymbol{\alpha}$ for which H_{0} can be rejected

p-Value Approach to Testing

- Convert sample result (e.g., \bar{x}) to test statistic (e.g., z statistic)
- Obtain the p-value
- For an upper tail test:

$$
\begin{aligned}
p \text { - value } & =P\left(z>\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}}, \text { given thet } H_{0} \text { is true }\right) \\
& =P\left(\left.z>\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}} \right\rvert\, \mu=\mu_{0}\right)
\end{aligned}
$$

- Decision rule: compare the p-value to $\boldsymbol{\alpha}$
- If p-value $<\boldsymbol{\alpha}$, reject H_{0}
- If p-value $\geq \boldsymbol{\alpha}$, do not reject H_{0}

Example 1: Upper-Tail Z Test for Mean Sigma Known

A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over $\$ 52$ per month. The company wishes to test this claim. (Assume $\sigma=10$ is known)

Form hypothesis test:
$H_{0}: \mu \leq 52$ the average is not over $\$ 52$ per month
$H_{1}: \mu>52$ the average is greater than $\$ 52$ per month
(i.e., sufficient evidence exists to support the manager's claim)

Example 2: Find Rejection Region

- Suppose that $\alpha=.10$ is chosen for this test

Find the rejection region:

Example 3: Sample Results

Obtain sample and compute the test statistic
Suppose a sample is taken with the following results: $n=64, \bar{x}=53.1(\sigma=10$ was assumed known)

- Using the sample results,

$$
z=\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}}=\frac{53.1-52}{\frac{10}{\sqrt{64}}}=0.88
$$

Example 4: Decision

Reach a decision and interpret the result:

Do not reject H_{0} since $z=0.88<1.28$
i.e.: there is not sufficient evidence that the mean bill is over $\$ 52$

Example 5: p-Value Solution

Calculate the p-value and compare to $\boldsymbol{\alpha}$ (assuming that $\mu=52.0$)

Do not reject H_{0} since p-value $=.1894>\alpha=.10$

One-Tail Tests

- In many cases, the alternative hypothesis focuses on one particular direction
$H_{0}: \mu \leq 3$
$H_{1}: \mu>3$
$H_{0}: \mu \geq 3$
$H_{1}: \mu<3$

This is an upper-tail test since the alternative hypothesis is focused on the upper tail above the mean of 3

This is a lower-tail test since the alternative hypothesis is focused on the lower tail below the mean of 3

Upper-Tail Tests

- There is only one critical value, since the rejection area is in only one tail

Lower-Tail Tests

- There is only one critical value, since the rejection area is in only one tail

Two-Tail Tests

- In some settings, the alternative hypothesis does not specify a unique direction
- There are two critical values, defining the two regions of rejection

$$
\begin{aligned}
& H_{0}: \mu=3 \\
& H_{1}: \mu \neq 3
\end{aligned}
$$

Hypothesis Testing Example (1 of 4)

Test the claim that the true mean \# of TV sets in US homes is equal to 3. (Assume $\sigma=0.8$)

- State the appropriate null and alternative hypotheses
- $H_{0}: \mu=3, H_{1}: \mu \neq 3$ (This is a two tailed test)
- Specify the desired level of significance
- Suppose that $\alpha=.05$ is chosen for this test
- Choose a sample size
- Suppose a sample of size $n=100$ is selected

Hypothesis Testing Example (2 of 4)

- Determine the appropriate technique
- σ is known so this is a z test
- Set up the critical values
- For $\alpha=.05$ the critical z values are ± 1.96
- Collect the data and compute the test statistic
- Suppose the sample results are $n=100, \bar{x}=2.84$ ($\sigma=0.8$ is assumed known)
So the test statistic is:

$$
z=\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}}=\frac{2.84-3}{\frac{0.8}{\sqrt{100}}}=\frac{-.16}{.08}=-2.0
$$

Hypothesis Testing Example (3 of 4)

- Is the test statistic in the rejection region? Reject H_{0} if $z<-1.96$ or $z>1.96$; otherwise do not reject H_{0}

Hypothesis Testing Example (4 of 4)

- Reach a decision and interpret the result

Since $z=-2.0<-1.96$, we reject the null hypothesis and conclude that there is sufficient evidence that the mean number of TVs in US homes is not equal to 3

Example 6: \boldsymbol{p}-Value (1 of 2)

- Example: How likely is it to see a sample mean of 2.84 (or something further from the mean, in either direction) if the true mean is $\mu=3.0$?
$\bar{x}=2.84$ is translated to
a z score of $z=-2.0$ $P(z<-2.0)=.0228$ $P(z>2.0)=.0228$
p-value
$=.0228+.0228=.0456$

Example 6: \boldsymbol{p}-Value (2 of 2)

- Compare the p-value to \boldsymbol{a}
- If p-value $<\boldsymbol{\alpha}$, reject H_{0}
- If p-value $\geq \boldsymbol{\alpha}$, do not reject H_{0}

Here: p-value $=.0456$

$$
\alpha=.05
$$

Since .0456 < . 05 , we reject the null hypothesis

Section 9.3 Tests of the Mean of a Normal Population Sigma Unknown (1 of 2)

- Convert sample result (\bar{x}) to a t test statistic

Consider the test

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{1}: \mu>\mu_{0}
\end{aligned}
$$

(Assume the population is normal)
The decision rule is:
Reject H_{0} if $t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}>t_{n-1, \alpha}$

Section 9.3 Tests of the Mean of a Normal Population sigma unknown (2 of 2)

- For a two-tailed test:

Consider the test

$$
\begin{array}{ll}
H_{0}: \mu=\mu_{0} & \text { (Assume the population is } \\
H_{1}: \mu \neq \mu_{0} & \text { normal, and the population } \\
\text { variance is unknown) }
\end{array}
$$

The decision rule is:
Reject H_{0} if $t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}<-t_{n-1, \frac{\alpha}{2}}$ or if $t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}>t_{n-1, \frac{\alpha}{2}}$

Example 7: Two-Tail Test Sigma Unknown

The average cost of a hotel room in Chicago is said to be $\$ 168$ per night. A random sample of 25 hotels resulted in
$\bar{x}=\$ 172.50$ and $s=\$ 15.40$. Test at the

$H_{0}: \mu=168$
$H_{1}: \mu \neq 168$
$\alpha=0.05$ level.
(Assume the population distribution is normal)

Example Solution: Two-Tail Test

$$
\begin{aligned}
& H_{0}: \mu=168 \\
& H_{1}: \mu \neq 168 \\
& \text { - } \alpha=0.05 \\
& \text { - } n=25
\end{aligned}
$$

- σ is unknown, so $\begin{aligned} & \sigma \text { is unknown, so } \\ & \text { use a } \boldsymbol{t} \text { statistic } \\ & \text { Critical Value: }\end{aligned} t_{n-1}=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}=\frac{172.50-168}{\frac{15.40}{\sqrt{25}}}=1.46$ $t_{24,025}= \pm \mathbf{2 . 0 6 4}$

Pearson
Do not reject \boldsymbol{H}_{0} : not sufficient evidence that true mean cost is different than $\$ 168$

Statistics for Business and Economics

Tenth Edition, Global Edition

Chapter 15 Analysis of Variance

Chapter Goals

- Recognize situations in which to use analysis of variance
- Understand different analysis of variance designs
- Perform a one-way analysis of variance and interpret the results

Section 15.1 Comparison of Several Population Means (1 of 2)

- Tests were presented in Chapter 10 for the difference between two population means
- In this chapter these procedures are extended to tests for the equality of more than two population means
- The null hypothesis is that the population means are all the same
- The critical factor is the variability involved in the data
- If the variability around the sample means is small compared with the variability among the sample means, we reject the null hypothesis

Section 15.1 Comparison of Several Population Means (2 of 2)

- Small variation around the sample means compared to the variation among the sample means

- Large variation around the sample means compared to the variation among the sample means

Section 15.2 One-Way Analysis of Variance

- Evaluate the difference among the means of three or more groups

Examples: Average production for $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ shifts Expected mileage for five brands of tires

- Assumptions
- Populations are normally distributed
- Populations have equal variances
- Samples are randomly and independently drawn

Hypotheses of One-Way ANOVA

- $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\cdots=\mu_{k}$
- All population means are equal
- i.e., no variation in means between groups
- $H_{1}: \mu_{i} \neq \mu_{j}$ for at least one i, j pair.
- At least one population mean is different
- i.e., there is variation between groups
- Does not mean that all population means are different (some pairs may be the same)

One-Way ANOVA (1 of 2)

$$
H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\cdots=\mu_{k}
$$

H_{1} : Not all μ_{i} are the same

One-Way ANOVA (2 of 2)

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\cdots=\mu_{K} \\
& H_{1}: \text { Not all } \mu_{i} \text { are the same. }
\end{aligned}
$$

At least one mean is different:
The Null Hypothesis is Not true
(Variation is present between groups)

$$
\mu_{1}=\mu_{2} \neq \mu_{3}
$$

$$
\mu_{1} \neq \mu_{2} \neq \mu_{3}
$$

Variability

- The variability of the data is key factor to test the equality of means
- In each case below, the means may look different, but a large variation within groups in B makes the evidence that the means are different weak

Small variation within groups

Large variation within groups

Sum of Squares Decomposition (1 of 2)

- Total variation can be split into two parts:

$$
\mathrm{SST}=\mathrm{SSW}+\mathrm{SSG}
$$

SST = Total Sum of Squares
Total Variation = the aggregate dispersion of the individual data values across the various groups

SSW = Sum of Squares Within Groups
Within-Group Variation = dispersion that exists among the data values within a particular group

SSG = Sum of Squares Between Groups
Between-Group Variation = dispersion between the group sample means

Sum of Squares Decomposition (2 of 2)

Total Sum of Squares (1 of 2)

$$
\begin{aligned}
& \mathrm{SST}=\mathrm{SSW}+\mathrm{SSG} \\
& \mathrm{SST}=\sum_{i=1}^{K} \sum_{j=1}^{n_{i}}\left(x_{i j}-\overline{\bar{x}}\right)^{2}
\end{aligned}
$$

Where:
SST = Total sum of squares
$K=$ number of groups (levels or treatments)
$n_{i}=$ number of observations in group i
$x_{i j}=j^{\text {th }}$ observation from group i
$\bar{x}=$ overall sample mean

Total Sum of Squares (2 of 2)

$$
\mathrm{SST}=\left(x_{11}-\overline{\bar{x}}\right)^{2}+\left(x_{12}-\overline{\bar{x}}\right)^{2}+\cdots+\left(x_{K n_{K}}-\overline{\bar{x}}\right)^{2}
$$

Response, x

Group 1 Group 2 Group 3

Within-Group Variation (1 of 3)

$$
\begin{aligned}
& \mathrm{SST}=\mathrm{SSW}+\mathrm{SSG} \\
& \mathrm{SSW}=\sum_{i=1}^{K} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}
\end{aligned}
$$

Where:
SSW = Sum of squares within groups
$K=$ number of groups
$n_{i}=$ sample size from group i
$\bar{x}_{i}=$ sample mean from group i
$x_{i j}=j^{\text {th }}$ observation in group i

Within-Group Variation (2 of 3)

$\mathrm{SSW}=\sum_{i=1}^{K} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}$
Summing the variation within each group and then adding over all groups

$$
\begin{gathered}
\mathrm{MSW}=\frac{\mathrm{SSW}}{n-K} \\
\text { Mean Square Within }=\frac{\mathrm{SSW}}{\text { degrees of freedom }}
\end{gathered}
$$

Within-Group Variation (3 of 3)

$$
\mathrm{SSW}=\left(x_{11}-\bar{x}_{1}\right)^{2}+\left(x_{12}-\bar{x}_{1}\right)^{2}+\ldots+\left(x_{K_{n_{K}}}-\bar{x}_{K}\right)^{2}
$$

Response, x

Group 2 Group 3

Between-Group Variation (1 of 3)

$$
\begin{gathered}
\mathrm{SST}=\mathrm{SSW}+\mathrm{SSG} \\
\mathrm{SSG}=\sum_{i=1}^{K} n_{i}\left(\bar{x}_{i}-\overline{\bar{x}}\right)^{2}
\end{gathered}
$$

Where:
SSG = Sum of squares between groups
$K=$ number of groups
$n_{i}=$ sample size from group i
$\bar{x}_{i}=$ sample mean from group i
$\overline{\bar{x}}=$ grand mean (mean of all data values)

Between-Group Variation (2 of 3)

$\mathrm{SSG}=\sum_{i=1}^{K} n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2}$

Variation Due to Differences Between Groups

MSG $=\frac{\text { SSG }}{K-1}$
Mean Square Between
Groups
$=\frac{\text { SSG }}{\text { degrees of freedom }}$

Between-Group Variation (з о 3)

$$
\mathrm{SSG}=n_{1}\left(\bar{x}_{1}-\overline{\bar{x}}\right)^{2}+n_{2}\left(\bar{x}_{2}-\overline{\bar{x}}\right)^{2}+\ldots+n_{K}\left(\bar{x}_{K}-\overline{\bar{x}}\right)^{2}
$$

Response, x

Obtaining the Mean Squares

$$
\begin{aligned}
\mathrm{MST} & =\frac{\mathrm{SST}}{n-1} \\
\mathrm{MSW} & =\frac{\mathrm{SSW}}{n-K} \\
\mathrm{MSG} & =\frac{\mathrm{SSG}}{K-1}
\end{aligned}
$$

Where $n=$ sum of the sample sizes from all groups
$K=$ number of populations

One-Way ANOVA Table

Source of Variation	SS	df	MS (Variance)	F ratio
Between Groups	SSG	$K-1$	MSG $=\frac{\text { SSG }}{K-1}$	$F=\frac{\text { MSG }}{\text { MSW }}$
Within Groups	SSW	$n-K$	MSW $=\frac{\text { SSW }}{n-K}$	
Total	SST $=$ SSG + SSW	$n-1$		

$K=$ number of groups
$n=$ sum of the sample sizes from all groups
df = degrees of freedom

One-Factor ANOVA F Test Statistic

$$
H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{K}
$$

H_{1} : At least two population means are different

- Test statistic

$$
F=\frac{\mathrm{MSG}}{\mathrm{MSW}}
$$

MSG is mean squares between variances
MSW is mean squares within variances

- Degrees of freedom
$-\mathrm{df}_{1}=K-1 \quad(K=$ number of groups $)$
$-\mathrm{df}_{2}=n-K \quad(n=$ sum of sample sizes from all groups $)$

Interpreting the F Statistic

- The F statistic is the ratio of the between estimate of variance and the within estimate of variance
- The ratio must always be positive
$-\mathrm{df}_{1}=K-1$ will typically be small
$-\mathrm{df}_{2}=n-K$ will typically be large
Decision Rule:
- Reject H_{0} if

$$
F>F_{K-1, n-K, \alpha}
$$

$$
F_{K-1, n-K, \alpha}
$$

One-Factor ANOVA F Test Example

You want to see if three different golf clubs yield different distances. You randomly select five measurements from trials on an automated driving machine for each club. At the .05 significance level, is there

Club 1	Club 2	Club 3
254	234	200
263	218	222
241	235	197
237	227	206
251	216	204

One-Factor ANOVA Example: Scatter Diagram

Club 1	Club 2	Club 3
254	234	200
263	218	222
241	235	197
237	227	206
251	216	204

$\bar{x}_{1}=249.2$

$\bar{x}_{2}=226.0 \quad \bar{x}_{3}=205.8$
$\bar{x}=227.0$

One-Factor ANOVA Example Computations

Club 1	Club 2	Club 3
254	234	200
263	218	222
241	235	197
237	227	206
251	216	204

\Rightarrow| $\overline{x_{1}}=249.2$ | $n_{1}=5$ |
| :--- | :--- |
| $\overline{x_{2}}=226.0$ | $n_{2}=5$ |
| $\overline{x_{3}}=205.8$ | $n_{3}=5$ |
| $\bar{x}=227.0$ | $n=15$ |
| | $k=3$ |

$\mathrm{SSG}=5(249.2-227)^{2}+5(226-227)^{2}+5(205.8-227)^{2}=4716.4$
SSW $=\bar{\downarrow}(254-249.2)^{2}+(263-249.2)^{2}+\ldots+(204-205.8)^{2}=1119.6$
$\operatorname{MSG}=\frac{4716.4}{(3-1)}=2358.2$
$\operatorname{MSW}=\frac{1119.6}{(15-3)}=93.3 \quad \zeta F=\frac{2358.2}{93.3}=25.275$

One-Factor ANOVA Example Solution

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \\
& H_{1}: \mu_{i} \text { not all equal } \\
& \boldsymbol{\alpha}=.05 \\
& \mathrm{df}_{1}=2 \quad \mathrm{df}_{2}=12
\end{aligned}
$$

Test Statistic:

Critical Value:

Reject H_{0} at $\alpha=0.05$

Conclusion:

 There is evidence that at least one μ_{i} differs from the rest $F_{2,12,05}=\mathbf{3 . 8 9}$
ANOVA -- Single Factor: Excel Output

Excel: data | data analysis | ANOVA: single factor

Summary						
Groups	Count	Sum	Average	Variance		
Club 1	5	1246	249.2	108.2		
Club 2	5	1130	226	77.5		
Club 3	5	1029	205.8	94.2		
ANOVA						F crit
Source of Variation	SS	df	MS	F		
Between Groups	4716.4	2	2358.2	25.275	$4.99 \mathrm{E}-05$	3.89
Within Groups	1119.6	12	93.3			
Total	5836.0	14				

Pearson

Statistics for Business and Economics

Tenth Edition, Global Edition

Chapter 14 Analysis of Categorical Data

Chapter Goals

- Use the chi-square goodness-of-fit test to determine whether data fits specified probabilities
- Set up a contingency analysis table and perform a chisquare test of association

Introduction

- Nonparametric Statistics
- Fewer restrictive assumptions about data levels and underlying probability distributions
- Population distributions may be skewed
- The level of data measurement may only be ordinal or nominal

Chi-Square Goodness-of-Fit Test

- Are technical support calls equal across all days of the week? (i.e., do calls follow a uniform distribution?)
- Sample data for 10 days per day of week:

Sum of calls for this day:

Monday	290
Tuesday	250
Wednesday	238
Thursday	257
Friday	265
Saturday	230
Sunday	192
	$\sum=1722$

Logic of Goodness-of-Fit Test

- If calls are uniformly distributed, the 1722 calls would be expected to be equally divided across the 7 days:
$\frac{1722}{7}=246$ expected calls per day if uniform
- Chi-Square Goodness-of-Fit Test: test to see if the sample results are consistent with the expected results

Observed vs. Expected Frequencies (1 of 4)

	Observed O_{i}	Expected E_{i}
Monday	290	246
Tuesday	250	246
Wednesday	238	246
Thursday	257	246
Friday	265	246
Saturday	230	246
Sunday	192	246
Total	1722	1722

Chi-Square Test Statistic (1 of 2)

H_{0} : The distribution of calls is uniform over days of the week H_{1} : The distribution of calls is not uniform

- The test statistic is

$$
\chi^{2}=\sum_{i=1}^{K} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}(\text { where d.f. }=K-1)
$$

where:
$K=$ number of categories
$O_{i}=$ observed frequency for category i
$E_{i}=$ expected frequency for category i

The Rejection Region

H_{0} : The distribution of calls is uniform over days of the week H_{1} : The distribution of calls is not uniform

$$
\chi^{2}=\sum_{i=1}^{K} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

- Reject H_{0} if $\chi^{2}>\chi_{\alpha}^{2}$
(with $k-1$ degrees of freedom)

Observed vs. Expected Frequencies (2 of 4)

	Observed O_{i}	Expected E_{i}	$\left(O_{i}-E_{i}\right)$	$\left(O_{i}-E_{i}\right)^{2}$	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
Monday	290	246	44	1936	7.870
Tuesday	250	246	4	16	0.065
Wednesday	238	246	-8	64	0.260
Thursday	257	246	11	121	0.492
Friday	265	246	19	361	1.467
Saturday	230	246	-16	256	1.041
Sunday	192	246	-54	2916	11.854
Total	1722	1722			$\chi^{2}=23.049$

Chi-Square Test Statistic (2 of 2)

H_{0} : The distribution of calls is uniform over days of the week H_{1} : The distribution of calls is not uniform

$$
\chi^{2}=\frac{(290-246)^{2}}{246}+\frac{(250-246)^{2}}{246}+\ldots+\frac{(192-246)^{2}}{246}=23.049
$$

$K-1=6$ (7 days of the week) so use 6 degrees of freedom:

$$
\chi_{.05}^{2}=12.5916
$$

Conclusion:

$$
\chi^{2}=23.05>\chi_{\alpha}^{2}=12.5916
$$

so reject \boldsymbol{H}_{0} and conclude that the distribution is not uniform

$$
\chi^{2} .05=12.5916
$$

Section 14.3 Contingency Tables

Contingency Tables

- Used to classify sample observations according to a pair of attributes
- Also called a cross-classification or crosstabulation table
- Assume r categories for attribute A and c categories for attribute B
- Then there are $(r \times c)$ possible cross-classifications

r Times c Contingency Table

	Attribute B				
Attribute A	$\mathbf{1}$	$\mathbf{2}$	\cdots	\mathbf{c}	Totals
$\mathbf{1}$	O_{11}	O_{12}	\ldots	$O_{1 c}$	R_{1}
$\mathbf{2}$	O_{21}	O_{22}	\cdots	$O_{2 c}$	R_{2}
\cdot	\cdot	\cdot	\cdots	\cdot	\cdot
\cdot	\cdot	\cdot	\cdots	\cdot	\cdot
\cdot	\cdot	\cdot	\cdots	\cdot	\cdot
\mathbf{r}	$O_{r 1}$	$O_{r 2}$	\cdots	$O_{r c}$	R_{r}
Totals	C_{1}	C_{2}	\cdots	C_{c}	n

Copyright © 2023 Pearson Education Ltd.

Test for Association (1 of 2)

- Consider n observations tabulated in an $r \times c$ contingency table
- Denote by $O_{i j}$ the number of observations in the cell that is in the $i^{\text {th }}$ row and the $j^{\text {th }}$ column
- The null hypothesis is
H_{0} : No association exists between the two attributes in the population
- The appropriate test is a chi-square test with $(r-1)(c-1)$ degrees of freedom

Test for Association (2 of 2)

- Let R_{i} and C_{j} be the row and column totals
- The expected number of observations in cell row i and column j, given that H_{0} is true, is

$$
E_{i j}=\frac{R_{i} C_{j}}{n}
$$

- A test of association at a significance level α is based on the chi-square distribution and the following decision rule

Reject H_{0} if $\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}>\chi_{(r-1)(c-1), \alpha}^{2}$

Contingency Table Example (1 of 2$)$

Left-Handed vs. Gender

- Dominant Hand: Left vs. Right
- Gender: Male vs. Female
H_{0} :There is no association between hand preference and gender
H_{1} : Hand preference is not independent of gender

Contingency Table Example (2ort)

Sample results organized in a contingency table:

Logic of the Test

H_{0} : There is no association between hand preference and gender
H_{1} : Hand preference is not independent of gender

- If H_{0} is true, then the proportion of left-handed females should be the same as the proportion of left-handed males
- The two proportions above should be the same as the proportion of left-handed people overall

Finding Expected Frequencies

120 Females, 12 were left handed

180 Males, 24 were left handed

Overall:
$P($ Left Handed $)$
$=\frac{36}{300}=.12$

If no association, then
$P($ Left Handed \mid Female $)=P($ Left Handed \mid Male $)=.12$
So we would expect 12% of the 120 females and 12% of the 180 males to be left handed...
i.e., we would expect $(\mathbf{1 2 0})(.12)=14.4$ females to be left handed $(180)(.12)=21.6$ males to be left handed

Expected Cell Frequencies

- Expected cell frequencies:

$$
E_{i j}=\frac{R_{i} C_{j}}{n}=\frac{\left(i^{\text {th }} \text { Row total }\right)\left(j^{\text {th }} \text { Column total }\right)}{\text { Total sample size }}
$$

Example:

$$
E_{11}=\frac{(120)(36)}{300}=14.4
$$

Observed vs. Expected Frequencies (3 of 4)

Observed frequencies vs. expected frequencies:

Gender	Hand Preference		
	Left	Right	
Female	Observed $=12$ Expected $=14.4$	Observed $=108$ Expected $=105.6$	120
Male	Observed $=24$ Expected $=21.6$	Observed $=156$ Expected $=158.4$	180
	36	264	300

The Chi-Square Test Statistic

The Chi-square test statistic is:

$$
\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}} \text { with d.f. }=(r-1)(c-1)
$$

- where:
$O_{i j}=$ observed frequency in cell (i, j)
$E_{i j}=$ expected frequency in cell (i, j)
$r=$ number of rows
$c=$ number of columns

Observed vs. Expected Frequencies (4 of 4)

\left.| Gender | Hand Preference | | | |
| :---: | :---: | :---: | :---: | :---: |
| | Left | Right | | |$\right]$

$\chi^{2}=\frac{(12-14.4)^{2}}{14.4}+\frac{(108-105.6)^{2}}{105.6}+\frac{(24-21.6)^{2}}{21.6}+\frac{(156-158.4)^{2}}{158.4}=0.7576$
Copyright © 2023 Pearson Education Ltd.

Contingency Analysis

Here, $\chi^{2}=0.7576<3.841$,
so we do not reject H_{0} and conclude that gender and hand preference are not associated

